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While affine planes are models of incidence geometry satisfying the Euclidean parallel postulate (Greenberg, 1993), finite affine planes pose an interesting question as to how many points and lines exist. Betweeness and congruence properties are not included. By satisfying the Euclidean parallel postulate we mean that for every line l and for every point P not on that line, there exists a unique line m through that point not incident with l (Greenberg, 1993). If we let ( be a finite affine plane so that all lines in ( have the same number of points lying on them and call this number n, we can prove three things. First, for each point in (, there are exactly n+1 lines passing through it. Second, there are n2 points in (. Finally, we can prove that there are n(n+1) lines in (.

Lemma 1. For each point in (, there are n+1 lines passing through it.

Proof.  Given a line l, we know that there exists a point P not on l by Proposition 2.3. If we define the n points of l as the set {X1, X2,…,Xn}, then by Incidence Axiom 1 there are at least n lines through P incident with l (Figure 1). To show that these lines are distinct, we suppose otherwise that lines P(X1 and P(X2 are not distinct (RAA hypothesis). Thus, P, X​1, X2 are on the same line, and that line is l. We have a contradiction since P is not on l by hypothesis. Therefore, the lines P(X1 and P(X2 are distinct (RAA conclusion); thus, it follows that all n lines through P and incident with a point of line l are distinct.


Another line through P exists that is parallel to l, because the finite affine plane satisfies the Euclidean Parallel postulate. That is, there is a unique line m through P that is not incident with l (Figure 1). Line m is not counted in the n lines determined above, because it is not incident with l by construction. Since this is the only line parallel to l, we conclude that there are n+1 lines through P.


We can show that there are no other lines through P by supposing otherwise (RAA hypothesis). If there exists another line s through P, the line is either incident with l or it is not. Considering the first case, lines l and s intersect at a point. Since this point must be an element of {X1, X2,…,Xn},  the line s has already been counted. Considering the second case, we know that in Euclidean geometry that there exists exactly one line through P parallel to l. Since lines s and m both pass through P and are parallel to l, they must be the same line. Therefore, we have shown that there are n+1, and only n+1 distinct lines through P in ( (RAA conclusion).

Lemma 2. There are n2 points in (. 

Proof. Given any point P, we know from Lemma 1 that there are n+1 distinct lines through P. By hypothesis, each of these lines contains n distinct points. Thus, there appear to be n(n+1) points in (. We have counted the point P for all n+1 lines, however, and we adjust the count by subtracting n points from our total. Therefore, there are n2 points in ( (Cave, 1999). 

To show that we have counted all the points in (, we suppose that there exists another point T in ( (RAA hypothesis). If T = P, the T has already been counted. If T ( P, then by Incidence Axiom 1, there exists a unique line incident on them. This line must be one of the n+1 lines through P by Lemma 1. The point T must be one of the n points on that line; thus, we have already counted the point. The point T is not distinct from the n2 points already counted (RAA conclusion). Thus, we conclude that there are n2 distinct points in the finite affine plane (.

Lemma 3. There are n(n+1) lines in (.

Proof. Given distinct, nonparallel lines m and l in ( that meet at a point P, let us consider the number of lines through the points of line m, the number of lines through the points of line l, and the number of lines that these two sets have in common. First, on line m there are n points, and through each point there are n+1 lines by Lemma 1. Therefore, there are



n(n+1)
(1)

lines through the points of m. When we consider that line m is contained in the set of lines through each point of m, then we must subtract n-1 lines from (1) in order to count m only once. Thus, there are



n2+1
(2)

lines through the points of m. We have already shown in Lemma 1 that the n+1 lines through a point of ( are distinct; thus, since we dealt with the only line common to the points, m, the lines counted in (2) are distinct.


Second, we can use similar arguments to show that there are n2+1 lines through the points of line l. Then there are



2(n2+1)
(3)

lines through the points of the two lines. We have not yet shown that all these lines are distinct.


Finally, we must examine the set of lines that are contained in both the set of lines through the points of m and the set of lines through the points of l. This is to say, we must determine how many of the lines counted in (3) are not distinct. For any given point Q(P on l, we have shown in the proof of Lemma 1 that there are n distinct lines through Q incident with line m, where l is in the set of n lines (Figure 2). Since these lines pass through the points of line m, they are already counted in the lines through the points of m. We then observe that the only lines through the points of l not counted in (2) but included in (3) are the lines not incident with m. These lines are contained in the set of lines such that for any line x, x ( m and x is parallel to m. Given that there are n distinct points on l and P is one of them, then there are n-1 parallel lines to m. These lines are the only lines counted in (3) that were not previously counted in (2). Therefore, we add n-1 lines to (2) to show that there are



n(n+1)
(5)

distinct lines in (. To show that we have counted all the lines of (, we consider a line s in ( that is not counted in (5) (RAA hypothesis). Line s cannot meet m since all lines of ( that meet m have been counted; thus, s must be parallel to m. By proposition 4.7, however, line s would meet l. Similarly, all lines of ( that meet l have been counted in (5), and therefore s cannot meet l. Since s can’t be parallel to both m and l, we conclude that there exists no line s in ( that has not been counted in (5) (RAA conclusion).


For a finite affine plane (, we have shown that there are n+1 lines passing through a given point, n2 points in (, and n(n+1) lines in (, where n is the number of distinct points on any given line in the plane.
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